898. Some 2.5-Dialkoxyphenols.

By C. A. BARTRAM, D. A. BATTYE, and C. R. WORTHING.

A convenient preparation of 2,5-dialkoxyphenols is described.

OTHER work required a number of 2,5-dialkoxyphenols, and in particular large quantities of 2,5-dimethoxyphenol. 2,5-Dimethoxyphenol has been obtained 1-4 by the diazotisation of 2,5-dimethoxyaniline, but in our hands under a variety of conditions the yields were low (10-25%) and variable, and the method was unsuitable for large-scale work.⁴ We obtained 2,5-dimethoxyphenol in 50% yield from 2,5-dimethoxyphenylmagnesium bromide by using Hawthorne's general method,⁵ but this route was only convenient for small quantities.

We have found that 2.5-dimethoxyphenol can conveniently be prepared in an overall yield of 50-60% by Friedel-Crafts acetylation of p-dimethoxybenzene, followed by Baeyer-Villiger oxidation⁶ with peracetic acid and hydrolysis of the resulting 2,5-dimethoxyphenyl acetate. We obtained maximum yields by using an excess of acetyl chloride as solvent⁷ in the Friedel-Crafts reaction. Ballio and Almirante⁸ reported yields of 54-90% for the oxidation of a series of methoxyacetophenones to the corresponding methoxyphenyl acetates by peracetic acid. Using their conditions we obtained a yield of 45-48% for this step; by modifying the process yields of 67-77% were practicable.

A number of 2,5-dialkoxyphenols (Table 2) were prepared from the corresponding 2,5-dialkoxyacetophenones (Table 1) by the above technique. The yields quoted are probably not optimum. 2,5-Dibutoxyphenol was insoluble in 2N-aqueous sodium or potassium hydroxide. The structure was confirmed, however, by the presence of an infrared absorption band at 3530 cm.⁻¹ and by the formation of ethers. The structure of 4-chloro-2,5-dimethoxyacetophenone followed from its conversion into the known 4-chloro-2,5-dimethoxyphenol.⁹

EXPERIMENTAL

2,5-Dimethoxyacetophenone.7-Powdered anhydrous aluminium chloride (579 g.) was added in portions during 3-4 hr. to a stirred solution of p-dimethoxybenzene (500 g.) in acetyl chloride (650 ml.) at -10° . The mixture was stirred between 0° and -10° for a further 3 hr.; further quantities of acetyl chloride were added, if necessary, to facilitate stirring. The mixture was added to ice (4 kg.) and hydrochloric acid (400 ml.; d 1·19) and stirred overnight. The oil was separated and combined with chloroform extracts (3×250 ml.) of the aqueous layer. The chloroform solution was washed with water $(2 \times 1 \text{ l.})$, 2N-aqueous sodium hydroxide (3 \times 500 mL), and water (1 \times 2 l.), and dried (MgSO4). The solvent was evaporated, and the residual oil distilled in vacuo to give, after a forerun of p-dimethoxybenzene, 2,5-dimethoxyacetophenone (520—565 g.), b. p. 156—158°/15 mm. (lit., 10^{10} 156—158°/15 mm.), $n_{\rm p}^{24}$ 1.5422.

- ² Burger and Fitchett, J. Amer. Chem. Soc., 1953, **75**, 1359. ³ Ungnade and Hein, J. Org. Chem., 1949, **14**, 911.
- Austin, personal communication.
- ⁵ Hawthorne, J. Org. Chem., 1957, 22, 1001; Yarboro and Karr, *ibid.*, 1959, 24, 1141. ⁶ Hassall, Org. Reactions, 1957, 9, 73.
- ⁷ Kuroda and Matsukama, Sci. Papers Inst. Phys. Chem. Res., Tokyo, 1932, 18, 51.
- ⁸ Ballio and Almirante, Ann. Chim. appl., 1951, 41, 421.
 ⁹ Castelfranchi, Oliverio, and Scrocco, Gazzetta, 1956, 86, 371.
- ¹⁰ Klages, Ber., 1904, 37, 3987.

¹ Süs, Annalen, 1947, 557, 237; Astill, Fassett, and Roudabush, Biochem. J., 1959, 72, 451.

2,5-Dimethoxyphenyl Acetate.8-A solution of peracetic acid was prepared by adding commercial 36-40% peracetic acid (615 ml.; 2.79 moles) to a solution of anhydrous sodium acetate (10.29 g.) in acetic acid (100 ml.) in order to neutralise ¹¹ the sulphuric acid (1% w/v) in Laporte peracetic acid. This solution was added dropwise to a stirred solution of 2,5-dimethoxyacetophenone (330 g., 1.89 moles) in acetic acid (300 ml.) at 40–42°, and the whole stirred overnight at this temperature. The solution was cooled to 20° , the excess of peracetic acid decomposed by 10% aqueous sodium hydrogen sulphite, and the mixture concentrated in vacuo on the steam-bath to about half its volume. The residue was poured into water (11.); the precipitated oil soon solidified. The solid was filtered off, washed with water, triturated with N-sodium carbonate (600 ml.), filtered off, washed with water, and dried in vacuo at 50°. The product was boiled with light petroleum $(1.21.; b. p. 60-80^{\circ})$, then filtered, and carbon tetrachloride (100 ml.) was added to the filtrate. On cooling, 2,5-dimethoxyphenyl acetate (245-280 g.) separated in prisms, m. p. 68-69° (lit., 63-64°, 8 68° 12) (Found: C, 61.5; H, 6.1. Calc. for C₁₀H₁₂O₄: C, 61.2; H, 6.2%). The petroleum-insoluble material was recrystallised from acetic acid to give 2,5-dimethoxy-1,4-benzoquinone 8 (8 g.) in yellow needles, decomp. $>260^{\circ}$ (lit., 13 decomp. >260°) (Found: C, 57.6; H, 4.55. Calc. for $C_8H_8O_4$: C, 57.1; H, 4.8%).

2,5-Dimethoxyphenol.—(a) A mixture of the acetate (196 g.), potassium hydroxide (268 g.), ethanol (120 ml.), and water (1340 ml.) was refluxed for 3 hr. The solution was cooled, washed with chloroform (2 \times 250 ml.), and acidified with hydrochloric acid (250 ml.; d 1·19) which precipitated a red oil. The oil was separated and combined with carbon tetrachloride extracts (3 \times 250 ml.) of the aqueous layer. The organic solution was washed with water (200 ml.), dried (MgSO₄), and evaporated, and the residual oil distilled *in vacuo* to give 2,5-dimethoxyphenol (132—147 g.), b. p. 124—126°/7 mm., n_p^{25} 1·5434 (lit.,² 1·5430).

TABLE 1.

2,5-Dialkoxyacetophenones.

		Found (%)				Reqd. (%) Yiel			
Acetophenone	B. p./mm.	Properties	С	н	Formula	С	н	(%)	Note
2-EtO-5-MeO	$100 - 106^{\circ} / 0.25$	M. p. 40-42°	68.2	$7 \cdot 3$	$C_{11}H_{14}O_{3}$	68 .0	$7 \cdot 3$	57	1
5-EtO-2-MeO	92/0.25	$n_{\rm D}^{-18} 1.5368$	67.5	$7 \cdot 1$	$C_{11}H_{14}O_{3}$	68 ·0	$7 \cdot 3$	73	2
2,5-(EtO) ₂	106/0.3	M. p. 40—41·5	69.2	7.8	$C_{12}H_{16}O_{3}$	69.2	7.7	83	3,4
2,5-(BuO) ₂	130/0.04	$n_{\rm D}^{22} 1.5110$	73.0	9.1	$C_{16}H_{24}O_{3}$	72.7	9.15	72	4, 5
4-Cl-2,5-(MeO) ₂	<u> </u>	M. p. 100-102.5	55.9	$5 \cdot 0$	$C_{10}H_{11}ClO_3$	$55 \cdot 9$	$5 \cdot 2$	86	4,6

(1) Prisms (from aqueous ethanol); ethylation of 2-hydroxy-5-methoxyacetophenone (Vyas and Shah, Org. Synth., 1951, **31**, 90). (2) Methylation of 5-ethoxy-2-hydroxyacetophenone (Patel and Shah, J. Indian Chem. Soc., 1954, **31**, 867). (3) Bost and Howe (J. Amer. Chem. Soc., 1952, **74**, 257) give b. p. 129°/13 mm., m. p. 41°. (4) Friedel-Crafts acetylation as for 2,5-dimethoxyacetophenone. (5) Bost and Howe (*ibid.*) give b. p. 159°/2 mm., m. p. 26°; semicarbazone, needles (from ethanol), m. p. 175–177° (Found: C, 63·4; H, 8·5; N, 13·5. $C_{17}H_{27}N_3O_3$ requires C, 63·5; H, 8·5; N, 13·1%). (6) Needles (from ethanol).

TABLE 2.

2,5-Dialkoxyphenols.

		Found (%)			Reqd.	(%)	Yield *		
Phenol	B. p./mm.	Properties	С	н	Formula	С	н	(%)	Note
2-EtO-5-MeO	$82^{\circ}/0.20$	$n_{\rm D}^{22} 1.5338$	$64 \cdot 45$	$6 \cdot 9$	$C_9H_{12}O_3$	64.3	$7 \cdot 2$	43	
5-EtO-2-MeO	82/0.40	M. p. 39—41·5°	$64 \cdot 4$	$7 \cdot 1$	$C_9H_{12}O_3$	64.3	$7 \cdot 2$	23	1
2,5-(EtO) ₂	82/0.06	М. р. 42—44	$65 \cdot 9$	7.6	$C_{10}H_{14}O_{3}$	$65 \cdot 9$	7.7	45	2
2,5-(BuO) ₂	114/0.15	$n_{\rm D}^{22} 1.5048$	70.8	$9 \cdot 2$	$C_{14}H_{22}O_{3}$	70.55	$9 \cdot 3$	50	3
4-Cl-2,5-(MeO),	<u> </u>	М. р. 93—95	51.0	4∙6	$C_8H_9ClO_3$	51.0	$4 \cdot 8$	44	4

* From the acetophenone (acetate not isolated). (1) Needles [from light petroleum (b. p. 40–60°)]. (2) Needles (from water). (3) Insoluble in alkali, recovered from chloroform solution. (4) Prisms (from benzene); lit.,⁹ m. p. 96–97°; acetate, needles (from aqueous ethanol), m. p. 79–82° (lit.,⁹ m. p. 81°) (Found: C, 52·2; H, 4·7; Cl, 15·2. Calc. for $C_{10}H_{11}ClO_4$: C, 52·05; H, 4·8; Cl, 15·4%); *p*-nitrobenzoate, yellow needles (from ethanol), m. p. 153–156° (lit.,⁹ m. p. 154–155°) (Found: C, 53·6; H, 3·9; Cl, 10·0; N, 4·3. Calc. for $C_{16}H_{12}ClNO_6$: C, 53·4; H, 3·6; Cl, 10·5; N, 4·15%). Oxidation carried out at 60°.

¹¹ Meltzer and Doczi, J. Amer. Chem. Soc., 1950, 72, 4986.

¹² Ciamician and Silber, Ber., 1891, 24, 2608.

¹³ Fabinyi and Széki, Ber., 1911, 44, 2293.

(b) 2-Bromoquinol¹⁴ was methylated with dimethyl sulphate, to give 1-bromo-2,5-dimethoxybenzene, b. p. 142—143°/17 mm. (lit., 3 140—144°/16 mm.), n_{p}^{22} 1.5702 (Found: Br, 36.5. Calc. for $C_8H_9BrO_2$: Br, 36.8%). The remaining stages were carried out under an atmosphere of nitrogen. 2,5-Dimethoxyphenylmagnesium bromide was prepared by boiling magnesium (2.5 g.) and the bromo-ether (21.9 g.) in tetrahydrofuran (150 ml.) for 2 hr. The solution was added slowly to a stirred solution of tributyl borate ¹⁵ (30 ml.) in tetrahydrofuran (100 ml.) at $\Rightarrow -60^{\circ}$. Stirring was continued overnight as the reaction mixture was allowed to reach room temperature. After removal of the tetrahydrofuran at 40° in vacuo, benzene (100 ml.) was added, and the mixture cooled in ice, treated with N-hydrochloric acid (100 ml.), and stirred for 5 min. The organic layer was separated, washed with water, and refluxed for 3 hr. with 28% hydrogen peroxide (30 ml.). The benzene solution was washed successively with water, acidified ferrous sulphate solution, water, and 2N-sodium hydroxide. The alkali washings were acidified, and the oil was extracted into benzene, which was evaporated. The residue was distilled to give 2,5-dimethoxyphenol (8 g.), b. p. $104-108^{\circ}/0.13-0.18$ mm., $n_{\rm p}^{23}$ 1.5430. The benzoate, needles (from aqueous ethanol), m. p. 73-75° (lit.,¹⁶ 73-75°) (Found: C, 69.7; H, 5.6. Calc. for $C_{15}H_{14}O_4$: C, 69.75; H, 5.5%), was identical (mixed m. p.) with the derivative prepared from the authentic phenol.⁴

The authors thank W. C. Austin for permission to quote his results and P. R. Wood for microanalyses.

PFIZER LIMITED, SANDWICH, KENT.

[Received, April 19th, 1963.]

¹⁴ Terent'ev, Grivev, and Terent'ev, Zhur. obshchei Khim., 1954, 24, 1433.

- ¹⁵ Johnson and Tompkins, Org. Synth., Coll. Vol. II, p. 106.
- ¹⁶ Gilman and Van Ess, J. Amer. Chem. Soc., 1939, **61**, 1365.